Unité pédagogique

Mechanics of Biological tissues and their interaction with medical devices

Derniere édition le: 26/09/2024

Modifier

Responsable:

AVRIL Stéphane MORIN Claire

Description générale :

Nombres d'ECTS : 3

This unit aims to provide students with the basic knowledge and skills to understand and model biomechanical problems related to medical devices and the tissues on which the devices act. The notions, principles and methods acquired during the lectures will be put into practice for the design of a clinical study, which will be discussed during the oral exam.

The Lectures and oral examination are given in English. This lecture is part of  the BMED Master's program, in which an ”advanced” Lecture is given on the numerical computation in biomechanics of living organisms.

The Lecture, 39 hours total, is divided into a number of topics covering biological tissues and the various medical devices used to treat dysfunctions.

Mots-clés:

Mathematical modelling Biomechanics Living tissue Medical Device Healthcare sector

Nombre d’heures à l’emploi du temps:

39

Domaine(s) ou champs disciplinaires:

Génie biologique, génie médical Mécanique Matériaux

Langue d’enseignement:

Anglais

Objectifs d’apprentissage:

A la fin de l’unité pédagogique, l’élève sera capable de : Niveau de taxonomie Priorité
Know the basics of mechanical concepts and how to apply them to the living 2. Comprendre Essentiel
Set up and implement mathematical models to solve industrial problems in the field of healthcare engineering 3. Appliquer Important
Formulate and test a hypothesis 4. Analyser Essentiel
Use your knowledge to design a small clinical study 7. Créer Utile

Modalités d’évaluation des apprentissages:

Part de l'évaluation individuelle Part de l'évaluation collective
Examen sur table : % Livrable(s) de projet : %
Examen oral individuel : 25 % Exposé collectif : 25 %
Exposé individuel : % Exercice pratique collectif : %
Exercice pratique individuel : % Rapport collectif : %
Rapport individuel : 50 %
Autre(s) : %

Programme et contenus:

Type d’activité pédagogique : Contenu, séquencement et organisation
Lecture + exercise

Introduction to biomechanics – example of the spring

Lecturer: Stéphane AVRIL, 3h

Lecture + exercise

Bone biomechanics – linear elasticity

Lecturer: Claire MORIN, 3h

Lecture + exercise

Blood circulation – basics of fluid mechanics

Lecturer: Alexandra VALLET, 3h

Lecture + exercise

Tendon mechanics – fibers mechanics

Lecturer: Stéphane AVRIL, 3h

Lecture + exercise

Arterial mechanics – introduction to hyperelasticity

Lecturer: Stéphane AVRIL, 3h

Practical

Arterial mechanics – Problems on hyperelasticity

Lecturer: Stéphane AVRIL, 3h

Lecture + exercise

Cellular mechanics : introduction to viscoelasticity 

Lecturer: Stéphane AVRIL, 3h

Lecture + practical

Muscular mechanics : damage and failure 

Lecturer: Baptiste PIERRAT, 3h

Lecture + exercise

Mechanics of the central nervous system : introduction to fluid structure interaction and poroelasticity 

Lecturer: Alexandra VALLET, 3h


Lecture + practical

Interaction between tissue and a medical device : Laplace’s law and introduction to friction mechanics 

Lecturer: Baptiste PIERRAT, 3h


Practical

Skin mechanics : Technics of experimental characterization 

Lecturer: Jérôme MOLIMARD, 3h

Lecture + exercise

Bone mechanobiology 

Lecturer: Claire MORIN, 3h

Project

In groups of 2 or 3 people, students will have to propose a biomechanical study which allows them to answer one of the biomedical questions suggested by the teachers.

The biomechanical study will be based on the analysis of scientific articles. Students will present their results in a 10-minute presentation, which should include:

1. the objective of the proposed biomechanical study

2. state of the art and background

3. proposed methodology (numerical, experimental or hybrid)

4. link with at least one of the biomechanics Lectures

5. expected results and how they would address the problematic