The goal of this class is to learn about the basics numerical modelling for applications to the living.
The Lectures and oral examination are given in English.
The Lecture, 39 hours total, is divided into 3 main parts namely Solid mechanics/ Fluid Mechanics / Reduced order modelling.
A la fin de l’unité pédagogique, l’élève sera capable de : | Niveau de taxonomie | Priorité |
---|---|---|
Know the basics of the numerical modelling of deformable solids and fluids | 2. Comprendre | Essentiel |
Know how to use medical imaging to generate a numerical model | 2. Comprendre | Important |
Know how to use, interpret and analyse the results of numerical simulations | 4. Analyser | Essentiel |
Use your knowledge to build simulations relevant to a clinical application | 7. Créer | Essentiel |
Know of to build, compute and analyse a reduced order model | 2. Comprendre | Essentiel |
Know how to confront your numerical results to experimental data for validation | 4. Analyser | Essentiel |
Part de l'évaluation individuelle | Part de l'évaluation collective | ||||
---|---|---|---|---|---|
Examen sur table : | % | Livrable(s) de projet : | 50 | % | |
Examen oral individuel : | 50 | % | Exposé collectif : | % | |
Exposé individuel : | % | Exercice pratique collectif : | % | ||
Exercice pratique individuel : | % | Rapport collectif : | % | ||
Rapport individuel : | % | ||||
Autre(s) : % |
Type d’activité pédagogique : | Contenu, séquencement et organisation |
---|---|
Numerical Practical | Generation of a numerical model from medical imaging (3h) |
Class + Exp. Pract. + Num. Pract. | Indentification of constitutive laws, Mechanical testing, V&V, Uncertainty quantification (9h) |
Class + Num. Pract. | Implementation of a constitutive law (3h) |
Numerical Practical | Computational Fluid Dynamics (6h) |
Class + Num. Pract. | Transport in tissues (3h) |
Numerical Practical | Fluid-Structure Interactions (3h) |
Class | Introduction to reduced order modelling : parametrization, sampling, selection and fitting of a surface response, application of reduced order (1h30)
|
Class + Num. Pract. | Design of experiments (3h) |
Class + Num. Pract. | Numerical approach for reduced order modelling parameterization of the geometry, sensitiviy studies, machine learning (4h30) |