The module gives a theoretical overview of the various forms of machine learning. First, we have a glance at unsupervised techniques that help us understand the data. Then, we focus on various supervised learning systems used in practice such as linear models, non linear models (in particular, neural networks), non parametric models, and support vector machines. We show how ensembles of models can outperform a single model, and we detail the particular case of deep neural networks and deep learning. Finally, we study how agents can learn what to do in the absence of labeled examples of what to do. We see how agents can learn from past experience to change their behavior using reinforcement learning techniques (Q-learning). Labs will be performed using python libraries like scikit-learn, pandas or numpy.
This teaching unit counts for 3 credits (/30 total for a semester).
A la fin de l’unité pédagogique, l’élève sera capable de : | Niveau de taxonomie | Priorité |
---|
Part de l'évaluation individuelle | Part de l'évaluation collective | ||||
---|---|---|---|---|---|
Examen sur table : | % | Livrable(s) de projet : | % | ||
Examen oral individuel : | % | Exposé collectif : | % | ||
Exposé individuel : | % | Exercice pratique collectif : | % | ||
Exercice pratique individuel : | % | Rapport collectif : | % | ||
Rapport individuel : | % | ||||
Autre(s) : % |
Type d’activité pédagogique : | Contenu, séquencement et organisation |
---|---|
Lectures | (10h) |
Supervised work | (16h) |
Labs | (10h) |