Elements of mathematics and scripting useful for the study of materials.
A la fin de l’unité pédagogique, l’élève sera capable de : | Niveau de taxonomie | Priorité |
---|---|---|
handle mathematical tools (matrices, vectors, tensors, diff. operators) | 3. Appliquer | Essentiel |
solve PDEs and ODEs | 2. Comprendre | Important |
formulate and solve a problem in 3D or 2D geometry | 3. Appliquer | Essentiel |
describe and analyze non-reproducibility of experimental tests | 4. Analyser | Essentiel |
serenely handle informatic tools | 3. Appliquer | Essentiel |
script in python and matlab | 3. Appliquer | Important |
interact with experts in numerical modelling | 2. Comprendre | Essentiel |
Part de l'évaluation individuelle | Part de l'évaluation collective | ||||
---|---|---|---|---|---|
Examen sur table : | 60 | % | Livrable(s) de projet : | % | |
Examen oral individuel : | % | Exposé collectif : | % | ||
Exposé individuel : | % | Exercice pratique collectif : | % | ||
Exercice pratique individuel : | 40 | % | Rapport collectif : | % | |
Rapport individuel : | % | ||||
Autre(s) : % |
Type d’activité pédagogique : | Contenu, séquencement et organisation |
---|---|
Lecture + Training | Vectors, matrices and tensors 2D and 3D geometry |
Coding | Application on image segmentation on python : extraction of polygonal features, simplification thereof and post-processing on GMSH |
Lecture + Training | Ordinary Differential Equations, Euler method Statistics and probabilities Non-linear problems and solvers (Newton and fixed-point) |
Coding | Droplet trajectory simulation through (non-)linear ODE solving and probabilistic assessment of the impact point on matlab |
Lecture + Training | Differential operators and Partial Differential Equations Signal processing and Fast Fourier Transform |
Coding | Resolution of diffusive equations by FFT on matlab, simulation of a sample distortion (through external library on matlab) and visualization (GMSH) |