Unité pédagogique

Image and pattern recognition

Derniere édition le: 26/09/2024

Modifier

Responsable:

DEBAYLE Johan

Description générale :

Image and Pattern Recognition are mature but exciting and fast developing fields, which underpin developments in cognate fields such as computer vision, image processing, text and document analysis and neural networks. It is closely akin to machine learning, and also finds applications in fast emerging areas such as biometrics, bioinformatics, multimedia data analysis and most recently data science.

The objective of this GP is to know the necessary mathematical and computational tools and master the concepts of geometrical characterization of shapes (signals, images, point pattern) to get basic knowledge about machine learning on images for real applications.

At the end of this toolbox, the student will be able to manipulate the main aspects of modern geometry, use concepts and results to solve concrete problems, such as the extraction of geometrical, morphometrical and textural information in image analysis as well as the characterization, modeling and simulation of point patterns or spatial object distributions. He will also be able to use some basic machine learning techniques to answer image and pattern recognition applicative problems, such as the automatic detection of cancerous skin lesions in biomedical imaging.

Important note: This toolbox will be used to validate a part of the Master of Science "Mathematical Imaging and Spatial Pattern Analysis" to which students can enroll in the third year of the ICM cycle to obtain a double degree. For more information, contact Johan DEBAYLE (debayle@emse.fr)

Mots-clés:

image analysis Machine learning Convex geometry integral geometry fractal geometry stochastic geometry Point patterns convex hull Delaunay triangulation alpha-shapes statistical shape analysis neural networks

Nombre d’heures à l’emploi du temps:

80

Domaine(s) ou champs disciplinaires:

Mathématiques Informatique, Systèmes d'information

Langue d’enseignement:

Anglais

Objectifs d’apprentissage:

A la fin de l’unité pédagogique, l’élève sera capable de : Niveau de taxonomie Priorité

Modalités d’évaluation des apprentissages:

Part de l'évaluation individuelle Part de l'évaluation collective
Examen sur table : 2 % Livrable(s) de projet : %
Examen oral individuel : % Exposé collectif : %
Exposé individuel : % Exercice pratique collectif : %
Exercice pratique individuel : 2 % Rapport collectif : %
Rapport individuel : 1 %
Autre(s) : %

Programme et contenus:

Type d’activité pédagogique : Contenu, séquencement et organisation
Lectures, Tutorials, Projects

This GP of 80h consists of three UPs:

  • Computational Geometry (24h)
  • Mathematical Geometry (33h)
  • Applications (23h)