Connection to the Thermo-Calc PC using X2Go:

1) Install the X2Go Client software on your computer: available at wiki.x2go.org.

2) Open the software and add a new session (click on **Session** \rightarrow **New session**).

3) In the session settings, enter the following information:

- Host: 193.49.173.62 - Username: Your EMSE username - SSH Port: 22 - Session Type: LXDE

4) Leave the other options as default and save the session.

5) Click on the saved session to start the SSH connection. A window will prompt you for your username and password—use your usual EMSE credentials.

6) Once connected, click on the **Start Menu** icon (bottom left), go to the **Other** section, and click on the **Thermo-Calc** icon. The software should launch.

7) During the first use, Thermo-Calc will ask you to activate the license. Select **Online Activation Mode**, then enter:

- Login: Lic-100117@thermocalc.com - Password: This password can be requested via email from Quentin Gaillard or Julien Favre.

FYI, this activation will generate a permanent key somewhere in your "home folder," eliminating the need to repeat this process for future uses.

8) /!\ Once finished, properly close Thermo-Calc! Disconnect by clicking the Start Menu → Logout. In the popup window, click Log out. Never shut down the PC, as it would make it inaccessible to all users.

Useful Commands:

- To check running processes, open a terminal and type:

top

Thermo-Calc appears under the name **java**.

- To terminate a running process, type:

```
kill -9 XXX
```

Replace **XXX** with the **PID number** from the first column of the `top` command.

File Transfer: To transfer files to/from the virtual machine, you can use Filezilla:

Install Filezilla on your host computer: https://filezilla-project.org.

Launch Filezilla and use the following settings:

- 1. Host: 193.49.173.62
- 2. Username & Password: Your EMSE credentials
- 3. Port: 22

Alternative Connection Method - SSH-X

- /!\ Whenever possible, prefer the previous method.

- 1) Install an SSH client, such as **Putty** (www.putty.org).
- 2) Open Putty and enter the following details:
 - 1. Host Name: 193.49.173.62
 - 2. Port: 22
- 3) In the left-side menu, expand **SSH** (click on the `+` sign) and select **X11**.
- 4) In the X11 tab, check the box Enable X11 forwarding.
- 5) Return to the **Session** tab and click **Open**.
- 6) The session will start. Enter your credentials:
 - 1. Login as: Your EMSE username
 - 2. Password: Your EMSE password

7) In the terminal, type:

```
Thermo-Calc
```

and press Enter. Thermo-Calc should open with a graphical interface.

8) **If your X2Go session is frozen**, you can log in via a simple SSH terminal (without the X11 option) and use the following commands to close the stuck X2Go session:

1. View running processes:

、、、 top ```

Then, search for a process named x2gosession in the list and note its Process ID (PID).

1. Kill the X2Go session:

kill -9 XXX

(Replace **XXX** with the process ID from `top`.)

Scripting with TC-Python :

Thermo-Calc can be used through a Python API, allowing for scripting and automated calculations: [] [TC-Python Documentation](https://thermocalc.com/support/documentation/tc-python-help/)

Using TC-Python

To use **TC-Python**, you need to launch a **Python IDE**. The recommended IDE is **Spyder**, as it directly utilizes the libraries installed on the PC without requiring a virtual environment.

Click on the **Spyder** icon in the **Programming** section of the Start Menu.

First-Time Setup

Once the IDE is launched, make sure to import the **tc_python** library.

Additionally, for the first use, you must run the Python script located at: ``` /opt/Thermo-Calc/2025a/SDK/TC-Python/Examples/Miscellaneous/pyex_M_04_license.py ``` Executing this script will prompt you to enter your **username and password** (the same credentials as before). This process will generate a **permanent key**, stored in hidden folders, so you won't need to repeat this step in the future.

Running Scripts with TC-Python Once set up, you can develop or run scripts with **TC-Python**. Example scripts are available at: ``` /opt/Thermo-Calc/2025a/SDK/TC-Python/Examples/ ```

Documentation You can also access the official documentation at: ``` /opt/Thermo-Calc/2025a/Manuals/TC-Python/index.html ```

Utilisation de l'API PyCharm :

/!\ Utilisation déconseillée...

A la première utilisation de PyCharm, il va falloir rentrer l'interpréteur python a utiliser.

Pour cela aller dans Settings > Python Interpreter. Dans le menu déroulant choisir "Show All" et cliquer sur "Add"

Sur la nouvelle fenêtre, à gauche, cliquer sur "System Interpreter" et vous pourrez choisir quelle version de Python utiliser (3.6 / 2.7 / autre ...).

Une fois l'interpréteur choisi, PyCharm va ajouter toutes les librairies installées. L'ensemble des librairies utilisables est indiqué dans Settings > Python Interpreter.

Utilisation de la console de Thermocalc

Un calcul dans la console passe part plusieurs étapes (modules) :

1) Module DATABASE : c'est ici qu'il faut choisir la base de donnée à utiliser, les éléments à considérer pour le calcul ou éventuellement ajouter ou enlever des phases.

2) Module POLY-3 : c'est ici qu'il faut renseigner les détails du calcul à faire. Conditions initiales / Type de traitement à faire (single point / 1D / diagramme de phase...). Quand toutes les conditions sont bonnes il faut lancer le calcul.

3) Module POST : c'est le post traitement du calcul. Tout ce qui concerne affichage des résultats sur la partie graphique ou récuperer les résultats sous forme d'image, de fichier txt ou autre.

Des exemples de calcul peuvent être trouvé dans le dossier de Thermocalc : /opt/Thermo-Calc/2021a/Examples/Console-Mode/Thermo-Calc

Les commandes de base de la console de Thermocalc :

```
# Commandes générales
go [module]
                                                 #change de module
                                 #aide sur la fonction
help [fonction]
                        #donne de l'aide sur les différents choix possibles
pour répondre à une question
*
                        #tous les éléments ou toutes les phases
                        #dérivée
.
# Module DATABASE
            (switch)
                             #change de bases de données
SW
                         (define-system)
                                                #définit le système
def-sys [composants]
                        #charge les fonctions thermodynamiques du système
get
défini
l-syst [argument]
                    (list-system)
                                          #liste les phases du système défini
rej [argument]
                    (reject)
                                     #rejette phases (ph) ou permet de
réinitialiser le système (sys)
```

```
23/08/2025 10:14
```

```
# Module POLY-3
s-c [conditions]
                    (set-conditions)
                                            #fixe des conditions pour le
calcul
1-c
            (list-conditions)
                                     #liste les conditions
            (compute-equilibrium)
                                               #effectue le calcul
c-e
d'équilibre dans les conditions données
            (list-equilibrium)
l-e
                                      #liste le résultat du calcul
d'équilibre
ent-sym f
                    (enter-symbol function)
                                                #définit une fonction
ch-st ph [phase]=[statut] (change-status phase)
                                                             #change le
statut d'une ou plusieurs phases (entered ou suspended)
s-a-v [n°][variable][limite]
                                (set-axis-variable)
                                                           #définit un axe
de variable
                                #calcule selon un axe variable (NORMAL:
step [option]
calcul phases stables, SEPARATE: calcul de chaque phase séparément)
                        #calcule selon deux axes
map
                            #vide la mémoire et efface le contenu des
save
calculs précédents
            (post)
                              #va au sous-module graphique
po
# Sous-module POST (sous-module de POLY-3)
                (set-diagram-axis)
                                      #définit les axes du tracé
s-d-a
                (set-scaling status)
                                        #définit les limites du tracé
S - S - S
s-l
            (set-label)
                               #met des label sur les courbes
                (set-diagram type) #passe en diagramme triangulaire
s-d-ty
                (set-tieline-status)
                                        #trace les conodes
s-t-s 1
pl
            (plot)
                              #trace le diagramme
            (back)
                              #retourne dans POLY-3
ba
# Fonctions thermodynamigues
# H, S, G sont l'enthalpie, l'entropie et l'énergie de Gibbs. Si rien n'est
spécifié, ce sont les grandeurs pour le système. On utilise généralement les
grandeurs molaires en rajoutant M comme suffixe. On peut ensuite préciser si
on souhaite pour une phase donnée. Par exemple :
    # GM(bcc) : énergie de Gibbs molaire de la phase bcc
    # HM(*) : enthalpie molaire de toutes les phases
```

Tracer un pseudo-binaire tout en gardant l'alliage initial identique :

Exemple : ajout de Ni dans un alliage Fe50Cr50 où on veut garder la proportion Fe/Cr constante.

go da #on rentre dans le module DATABASE sw TCFE9 #on veut travailler avec la base de donnée TCFE9 def-sys fe ni cr #définition des éléments à utiliser get #chargement de ces conditions go pol #on rentre dans le module POLY-3 s-c n=1 p=1e5 T=1000 N(ni)=0.5 N(fe)-N(cr)=0 #on donne nos conditions : n=1mol / T=1000K / P=1e5 Pa / Quantité de Ni au départ / Condition sur Fe et Cr pour garder Fe/Cr constant l-c #affiche nos conditions pour vérifier que l'on a bien le bon nombre de degré de liberté #calcule l'équilibre au point de départ défini c-e par s-c #affiche l'équilibre au point de départ l-e,,, (activité / phases / compositions) #définition du ler axe de variation. Ici on veut s-a-v 1 N(ni) 0 1,,, un diagramme de phase donc 2 données à faire varier : N(Ni) et T #définition du 2e axe de variation s-a-v 2 T 400 1600,,,, map #lancement du calcul qui prendra en compte les 2 axes définis. #on rentre dans le module POST post plot #on demande d'afficher le résultats. Par défaut il affiche les 2 axes de variable ici T en fonction de N(Ni) soit le diagramme de phase. Possibilité de changer l'affichage avec la commande s-dа

From: https://portail.emse.fr/dokuwiki/ - **DOC**

Permanent link: https://portail.emse.fr/dokuwiki/doku.php?id=recherche:softs:thermocalc&rev=1738164730

